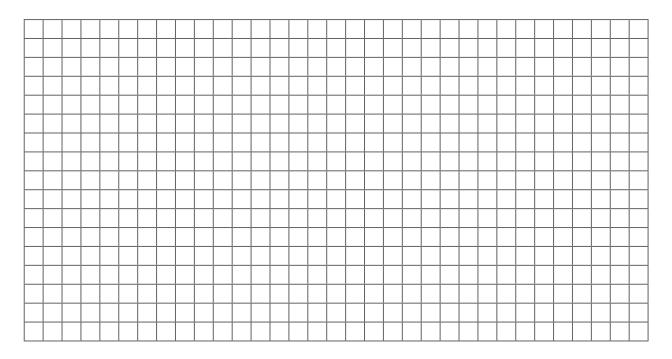

Relative Molekülmasse M_r

aus/zu:

Relative Molekülmasse M_r

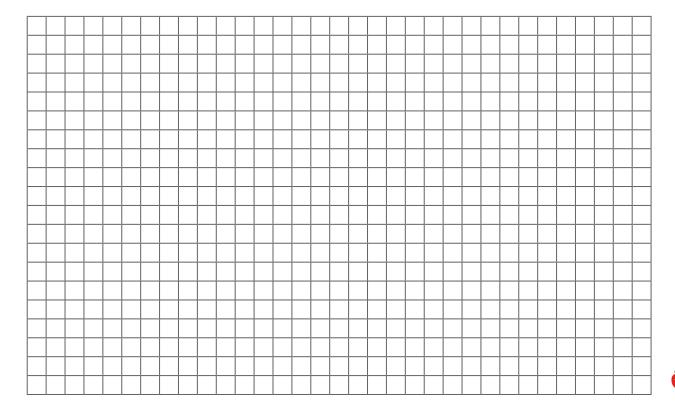
Zur Festigung und Vertiefung des Stoffes eignen sich die folgenden Übungsaufgaben:

<u>Aufgabe 1</u>: Berechne die relativen Molekülmassen (M_r) von Salzsäure, HCl, sowie von Ammoniak, NH₃.

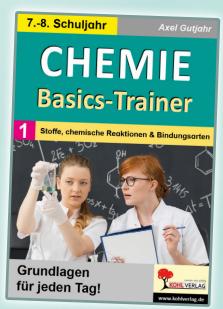

Salzsäure, HCI		
Elemente, die in dieser Verbindung enthalten sind	deren relative Atommassen	
Summe		
Oftmals wir der Wert der M, auf zwei Stellen nach dem Komma gerundet, also	*	

Ammoniak, NH ₃		
Elemente, die in dieser Verbindung enthalten sind	deren relative Atommassen	
Summe		
Oftmals wir der Wert der M _r auf zwei Stellen nach dem Komma gerundet, also	≈	

Relative Molekülmasse M_r


Aufgabe 2: Welche Verbindung hat die größere relative Molekülmasse? Aluminiumoxid Al₂O₃ oder Silberchlorid, AgCl? Erläutere kurz, welchen Lösungsweg du einschlägst.

Aufgabe 3: Beweise anhand der relativen Molekülmassen, dass das Gesetz von der Erhaltung der Masse für die nachstehende Reaktionsgleichung Gültigkeit hat. Du darfst mit gerundeten Molekülmassen (keine Kommastellen) arbeiten.


 $Mg(OH)_2 + HCI => MgCI_2 + H_2O$

Beschreibe zunächst kurz, in welchen Arbeitsschritten du vorgehen willst.

Ergänzende Arbeitshefte

Passende Arbeitsblätter für Ihren Unterricht

Der Kohl-Verlag bietet praxiserprobtes
Unterrichtsmaterial für alle Schulformen
– direkt einsetzbar und differenziert
aufbereitet. Ob als Print oder digital:
Die Materialien fördern individuelles
Lernen und sparen wertvolle
Vorbereitungszeit. Profitieren Sie von
attraktiven Rabatten, kostenlosen
Proben und einem zuverlässigen
Service – ideal für Lehrer:innen,
Referendar:innen und Pädagog:innen.

- sofort einsatzbereit
- mit Lösungen
- differenziert
- als Print und PDF verfügbar
- vieles auch interaktiv als PDF+ erhältlich

weitere Produkte in unserem Shop

Lösungen

Relative Molekülmasse M_r

Aufgabe 1:

Salzsäure, HCI	
Elemente, die in dieser Verbindung enthalten sind	deren relative Atommassen
Н	1,00784
CI	35,453
Summe	36,46084
Oftmals wir der Wert der M _r auf zwei Stellen nach dem Komma gerundet, also	≈ 36,46
Ammoniak, NH ₃	
Ammoniak, Mis	
Elemente, die in dieser Verbindung enthalten sind	deren relative Atommassen
	deren relative Atommassen 14,0067
Elemente, die in dieser Verbindung enthalten sind	
Elemente, die in dieser Verbindung enthalten sind N H mal 3,	14,0067

<u>Aufgabe 2</u>: Zuerst werden die relativen Molekülmassen beider Verbindungen ermittelt und anschließend miteinander verglichen.

Aluminiumoxid, Al ₂ O ₃		
Elemente, die in dieser Verbindung enthalten sind	deren relative Atommassen	
Al mal 2, (weil zwei Aluminiumatome vorhanden sind)	53,963078 (26,981539 • 2)	
O mal 3, (weil drei Sauerstoffatome vorhanden sind)	47,997 (15,999 • 3)	
Summe	101,960078	
Oftmals wir der Wert der M _r auf zwei Stellen nach dem Komma gerundet, also	≈ 101,96	

Silberchlorid, AICI		
Elemente, die in dieser Verbindung enthalten sind	deren relative Atommassen	
Ag	107,8682	
CI	35,453	
Summe	143,3212	
Oftmals wir der Wert der M _r auf zwei Stellen nach dem Komma gerundet, also	≈ 143,32	

⇒ Silberchlorid hat die höhere relative Molekülmasse.

Lösungen

Relative Molekülmasse Mr

Aufgabe 3:

- 1. Schritt: Ausgleichen der Reaktionsgleichung.
- 2. Schritt: Ermitteln der relativen Molekülmasse für jede Verbindung.
- 3. Schritt: Addieren der relativen Molekülmassen von sowohl den Verbindungen auf der rechten als auch auf der linken Seite der Gleichung.
- 4. Schritt: Vergleich, ob die Summen der Molekülmassen auf der rechten und linken Seite übereinstimmen.

1. Schritt: $Mg(OH)_2 + 2HCI \rightarrow MgCI_2 + 2H_2O$

2. Schritt: relative Molekülmassen (linke Seite) von

 $Mg(OH)_2 = Mg: 24; 2O: 2mal 16; 2H: 2mal 1$ Summe: 58 2 HCl = 2H: mal 1; 2Cl: 2mal 36 Summe: 74

relative Molekülmassen (rechte Seite) von

 $MgCl_2$ = Mg: 24; 2Cl: 2mal 36 Summe: 96 $2H_2O$ = 4H: mal 1; 2O: 2mal 16 Summe: 36

3. Schritt: Addieren der relativen Molekülmassen

 links
 rechts

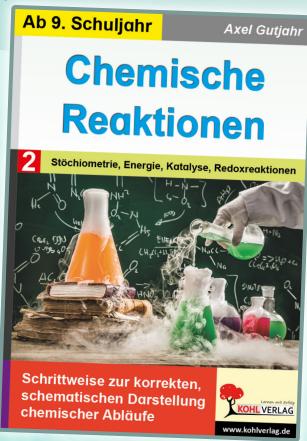
 Summe:
 58
 Summe:
 96

 Summe:
 74
 Summe:
 36

 Summe:
 132
 Summe:
 132

4. Schritt: Die Summen der relativen Molekülmassen stimmen auf beiden Seiten der Gleichung überein.

Dadurch ist bewiesen, dass das Gesetz von der Erhaltung der Masse auch für diese Gleichung


zutrifft.

Dieses Produkt ist eine Erweiterung zum Arbeitsheft:

Chemische Reaktionen

<u>Band 2</u>: Stöchiometrie, Energie, Katalyse, Redoxreaktionen



ab 12,49 €

Das Arbeitsheft ist vorgesehen zum Einsatz in der Sekundarstufe ab Klasse 9. Dieses Unterrichtsmaterial vertieft das Verständnis chemischer Reaktionen und baut auf dem ersten Band "Chemische Formeln & Gleichungen" auf. Es vermittelt Grundlagen zu Reaktionsbedingungen, dem Energieumsatz und dem Ausgleichen chemischer Gleichungen, einschließlich Redoxreaktionen. Übungen und Beispiele fördern selbstständiges Arbeiten und verknüpfen chemische mit physikalischen Aspekten.

britaseifert (Hintergrund), LDarin (Pfeile), fotografikateria (roter Pinselstrich), fendy (Computer-Icon); **S. 2**: SAMYA, O Sweet Nature; **S. 3**: SAMYA

